数据可视化之如何用Matplotlib画好看的图
Matplotlib 官方定义:Matplotlib是一个综合库,用于在Python中创建静态,动画和交互式可视化。导入相关包, 测试数据是阿里的双十二用户行为 ,绘制按天的pv和uv用户浏览量的折线图。
1、思迈特软件Smartbi是一款商业智能BI工具,做数据分析和可视化数据展现,以分析为主,提供多种数据接入方式,可视化功能强大,平台更适合掌握分析方法了解分析的思路的用户,其他用户的使用则依赖于分析师的结果输出。
2、当谈到比较好的数据可视化工具时,我们不能忽略Power BI。它是一个数据可视化和商业智能工具。Power BI将从不同来源获得的所有数据转换为报表和仪表板,使其易于理解。
3、Hightopo是由厦门图扑软件科技有限公司独立自主研发,专注于 2D 和 3D 图形界面组件数据可视化领域,用户遍及电信、电力、政府、交通、水利、公安、国防、医疗、金融、科研等行业。
Python数据可视化--在Python中调用ggplot进行绘图
1、因为你只只需要掌握ggplot2之后,就可以同时在R语言和Python语言中进行数据可视化分析了。
2、Matplotlib Matplotlib是Python中众多数据可视化库的鼻祖,其设计风格与20世纪80年代设计的商业化程序语言MATLAB十分接近,具有很多强大且复杂的可视化功能。
3、Matplotlib是一个Python 2维绘图库,已经成为Python中公认的数据可视化工具,通过Matplotlib你可以很轻松地画一些或简单或复杂地图形,几行代码即可生成线图、直方图、功率谱、条形图、错误图、散点图等等。
惊艳:近百种数据可视化工具效果展示,总有一款适合你!
1、Quantum GIS(QDIS)是一个用户界面友好、开源代码的GIS客户端程序,支持数据的可视化、管理、编辑与分析和印刷地图的制作。 Tableau Public是一款桌面可视化工具,用户可以创建自己的数据可视化,并将交互性数据可视化发布到网页上。
2、基于这一假设,开始基于目的性推荐几款数据可视化工具。
3、)Excel Excel虽然是入门级的数据分析工具,但作为微软杀器之一,自然有很多亮眼的功能,譬如其中内嵌的可视化功能。在Excel中有很多不错的可视化效果,包括迷你图,瀑布图,旭日图,散点图等。
4、)Excel Excel作为微软老牌数据分析工具,其内嵌了可视化功能,包括迷你图、散点图以及瀑布图等可视化图表。然而由于颜色、排版等方面的局限性。因此,不能作为专业的可视化工具。当然,其中也不乏精品。
5、值得推荐的数据可视化工具:Visual.ly Visual.ly是一个综合图库和信息图表生成器,相当于可视化的内容服务,提供了大量信息图模板。它在内容上比一般的视觉分析工具表达更深入。
数据可视化真正可以遵循的制图技巧
确保排版准确传达信息,并帮助用户专注于数据,而不是分散注意力。注意以下几点:标签过长时不要使用旋转角度,而是用水平条形图来表达,这个简单的技巧将确保用户能够更有效地观看图表。
颜色可视化 通过颜色的深浅来表达指标值的强弱和大小,是数据可视化设计的常用方法,用户一眼看上去便可整体的看出哪一部分指标的数据值更突出。
合适的数据可视化工具 “工欲善其事,必先利其器”,在工作中使用一款实用的数据可视化工具比自己去制作可视化图表效率快的多,制作也比自己制作的精美。
第注重数据的比较 想要数据反映出问题,就必须有比较,比较是一种相对的变化,不仅仅是在于量的呈现,比较可以看到问题的存在性,比较一般分为同比或者环比两种,是使用比较多的。
学会使用Boken实现数据可视化(一)
1、数据可视化一定要准备数据,bokeh可以用作输入数据的数据格式有:现在,使用鼠标拖动画出一个区域,观察发生了什么?可以发现,选择区域中的点全部变成了红色,其余点则变成了透明的灰色。
2、Boken:是一个交互式的可视化库,支持使用Web浏览器展示,可使用快速简单的方式将大型数据集转换成高性能的、可交互的、结构简单的图表。
3、Matplotlib可用于Python脚本,Python和IPython shell,jupyter笔记本,Web应用程序服务器和四个图形用户界面工具包。通过 Matplotlib,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率谱,条形图,错误图,散点图等。