33种经典图表类型总结,轻松玩转数据可视化
缺陷:分类过多,则扇形越小,无法展现图表。相似图表:1)环形图。挖空的饼图,中间区域可以展现数据或者文本信息。2)玫瑰饼图。对比不同类别的数值大小。3)旭日图。展示父子层级的不同类别数据的占比。
做完数据分析后,用什么可视化工具展示分析结果
Powerpoint 所谓的Powerpoint,其实就是经常所说的PPT。作为微软老大哥经典的软件工具,其商务场合出现的频次无人能及。而我身边很多数据分析师的朋友,其可视化的比较终结果,通常都是用PPT来进行呈现的。
统计数据可视化:用于对统计数据进行展示、分析,一般都是以数据库表的形式提供,常见的有 HighCharts、ECharts、GChart.js 、FineBI等等。
Tableau 它是比较流行的数据可视化工具之一。它使用户能够处理大量用于不同领域的数据集,例如,人工智能,商业智能,机器学习等。Tableau协助数据导入和元数据管理。
柱状图对分类数据很好,因为你可以很容易地看到基于柱的类别之间的区别(比如大小);分类也很容易划分和用颜色进行编码。我们将会看到三种不同类型的柱状图:常规的,分组的,堆叠的。
数据可视化(Data Visualization)是涉及信息技术、自然科学、统计分析、图形学、交互、地理信息等多种学科交叉领域,通过将非数字的信息进行可视化以表现抽象或复杂的概念和信息的技术。简单的说,这种技术将数据以图表的方式呈现,用以传递信息。
颜色可视化 通过颜色的深浅来表达指标值的强弱和大小,是数据可视化设计的常用方法,用户一眼看上去便可整体的看出哪一部分指标的数据值更突出。
数据可视化的三种类型有: 折线图:折线图是一种比较常用的数据可视化方式,它可以用来表示一个变量随时间的变化情况。在折线图中,类别数据沿水平轴均匀分布,所有值数据沿垂直轴均匀分布。
B.技术的发展已导致数据的大爆炸。这反过来又促使数据展示方式的激增。一般来说,大多数据可视化分为2种不同的类型:探索型和解释型。勘探类型帮助人们发现数据背后的故事,而解析数据方便给人们看。
如何将数据分析结果进行可视化展现
这种关注点从属性数据到关系型数据的转变,显著影响着我们如何收集数据,如何寻找参考项,和对这些信息的分析方法。
数据可视化指的是,通过商业智能BI以图形化手段为基础,将复杂、抽象和难以理解的数据用图表进行表达,清晰有效地传达信息。
使用直方图真得能清晰地呈现出各个组的频率之间的相对差别。组的使用(离散化)真正地帮助我们看到了“更加宏观的图形”,然而当我们使用所有没有离散组的数据点时,将对可视化可能造成许多干扰,使得看清真正发生了什么变得困难。
首先输入数据,点击插入菜单,在图表命令组找到柱形图命令,插入柱形图。按下alt键调整图表大小,并使图表自动吸附网格线。发现图表中有两个系列,四组数据。在其中一个系列上右键单击,点击更改系列图表类型。
数据可视化常用的五种方式及案例分析
颜色可视化 通过颜色的深浅来表达指标值的强弱和大小,是数据可视化设计的常用方法,用户一眼看上去便可整体的看出哪一部分指标的数据值更突出。
颜色可视化 经过颜色的深浅来表达目标值的强弱和巨细,是数据可视化规划的常用办法,用户一眼看上去便可全体的看出哪一部分目标的数据值更突出。
分层 分层方法用于呈现多组数据。这些数据可视化通常展示的是大群体里面的小群体。分层数据可视化的例子包括一个树形图,可以显示语言组。
通过数据可视化将大量的数据集构成数据图像,同时将数据的各个属性值以多维数据的形式表示,可从不同的维度观察数据,从而对数据进行更深入的观察和分析。
常见的数据分析可视化图表有哪些?
数据可视化的图表类型有折线图、散点图、曲线图、柱状图、直方图、雷达图。还有一维、二维、三维图。静态图,动态图,等等。
柱状图使用场景一:柱状图适合表示某一个时间段内的数据,横坐标是时间,纵坐标是数值,如下图所示:图中虚线为根据各种柱高计算出来的平均线,通过虚线可看到不同柱子对应的数据是高于平均值还是低于平均值。
折线图 折线图可能是常见的可视化方式了,它可以让用户很直观地按照时间维度了解系统的情况。系统中每个单一或聚合的指标都会以一条折线在图表中体现。
简单讲下。文字类、数字类、多媒体、折线图、柱状图、饼图、雷达图、河流图、散点图、思维导图、地图、3D类等等,主要有这几大类型,细分的话就更多了。迪赛智慧数的图表很丰富,有130多个呢。
常用图表类型:柱形图(直方图)、折线图、饼图、条形图、雷达图等,近年来比较酷炫的图表有词云、漏斗图、数据地图、瀑布图。